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Abstract

In this paper we analyze a stabilized finite element approximation for the incompressible Navier–Stokes equations based on the sub-
grid-scale concept. The essential point is that we explore the properties of the discrete formulation that results allowing the subgrid-scales
to depend on time. This apparently ‘‘natural’’ idea avoids several inconsistencies of previous formulations and also opens the door to
generalizations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let us start by writing the incompressible Navier–Stokes
equations. Consider a domain X in Rd , where d ¼ 2 or 3 is
the number of space dimensions, with boundary C ¼ oX, in
which we want to solve an incompressible flow problem in
the time interval ½0; T �. If u is the velocity of the fluid and p

the pressure, the incompressible Navier–Stokes equations are

otu� mDuþ u � ruþrp ¼ f in X; t 2�0; T ½; ð1Þ
r � u ¼ 0 in X; t 2�0; T ½; ð2Þ

where m is the kinematic viscosity and f is the force vector.
These equations must be supplied with an initial condition
of the form u ¼ u0 in X; t ¼ 0, and a boundary condition
which, for simplicity, will be taken as u ¼ 0 on C; t 2�0; T ½.

Let us introduce some standard notation. The space of
functions whose p power (1 6 p <1) is integrable in a
domain X is denoted by LpðxÞ, L1ðxÞ being the space of
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bounded functions in X. The space of functions whose dis-
tributional derivatives of order up to m P 0 (integer)
belong to L2ðxÞ is denoted by HmðxÞ. The space H 1

0ðxÞ
consists of functions in H 1ðxÞ vanishing on ox. The topo-
logical dual of H 1

0ðxÞ is denoted by H�1ðxÞ. A bold charac-
ter is used to denote the vector counterpart of all these spaces.

If f and g are functions (or distributions) such that fg is
integrable in the domain x under consideration, we denote

hf ; gix ¼
Z

x
fg dx;

so that, in particular, h�; �ix is the duality pairing between
H�1ðxÞ and H 1

0ðxÞ. When f ; g 2 L2ðxÞ, we write the inner
product as hf ; gix � ðf ; gÞx. The norm in a Banach space X

is denoted by k � kX , and Lpð0; T ; X Þ is the space of time
dependent functions such that their X-norm is Lpð0; T Þ.
This notation is simplified in some cases as follows: ð�; �ÞX �
ð�; �Þ, h�; �iX � h�; �i and k � kL2ðXÞ � k � k.

Using this notation, the velocity and pressure finite ele-
ment spaces for the continuous problem are L2ð0; T ;Vd

0Þ
and L1ð0; T ;Q0Þ (for example), respectively, where Vd

0 :¼
H1

0ðXÞ, Q0 :¼ L2ðXÞ=R. The weak form of the problem
consists in finding ½u; p� 2 L2ð0; T ;Vd

0Þ � L1ð0; T ;Q0Þ such
that
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ðotu; vÞ þ mðru;rvÞ þ hu � ru; vi � ðp;r � vÞ ¼ hf ; vi; ð3Þ
ðq;r � uÞ ¼ 0 ð4Þ

for all ½v; q� 2Vd
0 � Q0, and satisfying the initial condition

in a weak sense.
The Galerkin finite element approximation of problem

(3), (4) consists in seeking the unknowns in finite dimen-
sional spaces Vd

0;h �Vd
0 and Q0;h � Q0 and taking the test

functions also in these spaces. Using the method of lines,
the problem discretized in space, but still continuous in
time, consists in finding ½uhðtÞ; phðtÞ� 2 L2ð0; T ;Vd

0;hÞ�
L1ð0; T ;Q0;hÞ such that

otuh; vhð Þ þ mðruh;rvhÞ þ huh � ruh; vhi � ðph;r � vhÞ
¼ hf ; vhi; ð5Þ

ðqh;r � uhÞ ¼ 0 ð6Þ

for all ½vh; qh� 2Vd
0;h � Q0;h.

Once discretized in time (using for example a finite
difference scheme), it is well known that problem (5), (6)
suffers from different types of numerical instabilities. Two
of them are inherited from the stationary problem, namely,
the dominance of the (nonlinear) convective term over the
viscous one when m is small and the compatibility required
for the velocity and pressure finite element spaces posed by
the inf–sup condition. There are also numerical instabilities
encountered when the time step size of the time discretiza-
tion is small, particularly in early stages of the time
integration.

A vast literature exists dealing with the instabilities due
to the dominance of convection and to the velocity–pressure
compatibility condition. In this work we adopt a stabilized

finite element formulation based on the subgrid-scale con-
cept and, in particular, in the approach introduced by
Hughes in [24,26] for the scalar convection–diffusion equa-
tion. The basic idea is to approximate the effect of the com-
ponent of the continuous solution which cannot be resolved
by the finite element mesh, which we will call subscale, on
the discrete finite element solution. This approach is a gen-
eral framework in which it is possible to design different sta-
bilized formulations. We will restrict our attention to two
approaches, described in [10,11]. In the first case, the veloc-
ity and pressure subscales are taken proportional to the
residual of the finite element component in the momentum
and in the continuity equations, respectively. The bottom
line of the second approach is to take only the component
of these residuals L2 orthogonal to the finite element space.
This idea was first introduced in [8] as an extension of a
stabilization method originally introduced for the Stokes
problem in [12] and fully analyzed for the stationary
Navier–Stokes equations in [13].

However, the main interest of this paper is not how to
stabilize convection-dominated flows or how to be able to
use equal velocity–pressure interpolation, thus avoiding
the need to satisfy the inf–sup condition that problem
(5), (6) demands. Our objective in this paper is to analyze

the formulation that stems from considering time dependent
subscales. In fact, the idea we will follow is not new, and
was already introduced in [11]. In this sense, the present
work can be considered as a continuation of this reference,
with the emphasis placed solely on the consequences of tak-
ing the subscales time dependent. We contribute here with
the study of several properties of the formulation, includ-
ing an analysis of its stability and more numerical experi-
ments to check its performance.

The paper is organized as follows. The numerical formu-
lation is described in Section 2, and its main features and its
stability analysis are presented in Sections 3 and 4, respec-
tively. In the former, we detail the benefits of considering
the subscales time dependent, and how some of the misbe-
haviors of classical stabilized finite element methods are
overcome. We also end Section 3 with a speculative subsec-
tion considering the tracking of subscales along the nonlin-
ear process as a way to model turbulence. This idea was
also pointed out in [11]. The stability analysis of Section
4 is done for the linearized problem, that is, replacing the
advection velocity u by a known velocity a, which is
assumed to be constant. In spite of this simplification, this
stability analysis allows us to highlight the improvement in
the stability of the original Galerkin formulation (5), (6)
introduced by the time dependent subscales. In Section 5
we present the results of three simple numerical examples
that show the benefits of our approach. The paper con-
cludes with some final remarks in Section 6.
2. Stabilized finite element problem

Let us consider a finite element partition of the domain
X with nel elements. A generic element domain will be
denoted by K and its diameter by hK . To simplify the dis-
cussion, we will consider quasi-uniform finite element par-
titions, so that if h ¼ maxKhK and . ¼ minK .K , with .K the
diameter of the ball inscribed in K, the quotient h=.
remains bounded for all partitions. Likewise, we will
assume that all the finite element spaces constructed are con-

tinuous and of the same order for the velocity and the
pressure.

The starting idea of the formulation we propose is the
variational multiscale formulation proposed in [24,26].
Let Vd

0 ¼Vd
0;h �fVd

0, where Vd
0;h is the velocity finite ele-

ment space and fVd
0 any space to complete Vd

0;h in Vd
0. Sim-

ilarly, let Q0 ¼ Q0;h � eQ0. The original continuous problem
(3), (4) is equivalent to find ½uhðtÞ; phðtÞ� 2 L2ð0; T ;Vd

0;hÞ�
L1ð0; T ;Q0;hÞ, as well as ½~uðtÞ; ~pðtÞ� 2 L2ð0; T ;fVd

0Þ�
L1ð0; T ; eQ0Þ, such that

ðotðuh þ ~uÞ; vÞ þ mðrðuh þ ~uÞ;rvÞ þ hðuh þ ~uÞ � rðuh þ ~uÞ; vi
� ðph þ ~p;r � vÞ ¼ hf ; vi; ð7Þ

ðq;r � ðuh þ ~uÞÞ ¼ 0 ð8Þ

for all ½v; q� 2Vd
0 � Q0. These equations can be split into

two systems by taking first ½v; q� ¼ ½vh; qh� 2Vd
0;h � Q0;h

and then ½v; q� ¼ ½~v; ~q� 2 fVd
0 � eQ0. Denoting by n the
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exterior unit normal to an integration domain, after inte-
grating some terms by parts the first choice leads to

ðotðuh þ ~uÞ; vhÞ þ mðruh;rvhÞ
þ m

X
K

½�ð~u;DvhÞK þ h~u; n � rvhioK �

þ hðuh þ ~uÞ � ruh; vhi � h~u; ðuh þ ~uÞ � rvhi
� ðph þ ~p;r � vhÞ ¼ hf ; vhi; ð9Þ

ðqh;r � uhÞ � ðrqh; ~uÞ ¼ 0; ð10Þ

where we have used the fact that r � ðuh þ ~uÞ ¼ 0, that the
sum of the integral of n � ðuh þ ~uÞ on the boundaries of two
adjacent elements (and thus with opposite normals n) must
be zero and that uh ¼ ~u ¼ 0 on C.

The second system is obtained by taking ½v; q� ¼ ½~v; ~q� 2fVd
0 � eQ0 in (7), (8). Of course, the resulting system,

together with (9), (10), is exactly equivalent to (3), (4). A
stabilized finite element method is obtained if ~u and ~p are

approximated and their expression inserted into (9), (10).
It is not our purpose in this paper to emphasize how to

obtain the approximations for ~u and ~p, but

• To allow ~u to be time dependent, and therefore to keep
its time dependency in (9).

• To note that the advection velocity in (9) is uh þ ~u, and
not only uh.

In fact, we will not explore in detail the second item.
Some comments about this point will be made later on.
Our main concern will be to study the properties of the
numerical formulation that emanates from considering ~u
time dependent. For this purpose, it is enough to make
some simplifying assumptions:

• The term involving integrals over interelement bound-
aries will be neglected. This can be understood as con-
sidering the velocity subscales as bubble functions,
vanishing on the boundaries of the elements (see, e.g.,
[1,4]). Even though its consideration can bring impor-
tant stabilization properties, it is not essential for what
follows.

• The approximation of the subgrid-scales is performed as
follows. The system for the subscales ½~uðtÞ; ~pðtÞ�,
obtained taking ½v; q� ¼ ½~v; ~q� 2 fVd

0 � eQ0, can be under-
stood as
ot~uþ ðuh þ ~uÞ � r~u� mD~uþr~p ¼ ru;h;

r � ~u ¼ rp;h;

where ru;h and rp;h are appropriate residuals of the finite
element components uh and ph adequately projected

onto the space of subscales (fVd
0 for the first equation

and eQ0 for the second). Using for example the argu-
ments described in [11], based on a Fourier analysis of
the problem for the subscales, the following approxima-
tion to the previous equations can be motivated:
ot~uþ
1

s1

~u ¼ ru;h; ð11Þ

1

s2

~p ¼ rp;h þ s1otrp;h; ð12Þ

where

s1 ¼ c1

m

h2
þ c2

j uh þ ~u j
h

� ��1

; ð13Þ

s2 ¼
h2

c1s1

; ð14Þ

ru;h ¼ �P½otuh þ ðuh þ ~uÞ � ruh � mDuh þrph � f �; ð15Þ
rp;h ¼ �P½r � uh�: ð16Þ

In these expressions, c1 and c2 are algorithmic parame-
ters (of order 1) and P can be either the identity for
‘‘classical’’ stabilized finite element methods (which
can be traced back to [5], for example) or the projection
orthogonal to the finite element space (we have used the
same symbol for the scalar and vector counterparts of
this operator). As in [10,11] we will refer to the choice
P ¼ I (identity) as the Algebraic Subgrid-Scale formula-
tion (ASGS), whereas P ¼ P?h , Ph being the L2 projec-
tion onto the appropriate finite element space (of
velocities or of pressures), will lead to the so-called
Orthogonal Subscales Stabilization (OSS).

As is shown in [28], the fine-scale component of the
solution is related to the residual of the coarse scales
through so-called small-scale Green’s function. It was
also shown in [28] that the small-scale Green’s function
is highly localized for the right choice of the projector,
rendering local algebraic approximations (11), (12) a
viable model for the fine scales.

Again, let us stress that the two assumptions described
are not essential for our discussion and could be modified.
The important point is that ot~u appears in the approximate

equation for the velocity subscale. In our case, this approx-
imation turns out to be the differential equation in time (11).

Remark 1. Observe that Eq. (11) must hold at each point,
and therefore it is in fact an ordinary differential equation

rather than a partial differential equation.

Remark 2. Neglecting the time derivative in (11) could be
understood as considering that the subscales adapt auto-
matically to the finite element residual. The subscales
obtained from this assumption were defined in [11] as
quasi-static.

Remark 3. Observe that (11) is a nonlinear equation, due
to the dependence of s1 and ru;h on ~u. Obviously, this does
not depend on whether the subscales vary in time or not,
and was also noticed in [7] for what we have called
quasi-static subscales. In this case, it is possible to tackle
directly the resulting nonlinear algebraic equation and
solve for ~u in terms of ru;h accounting for this nonlinearity.
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However, in our case this is not possible, and we will have
to linearize (11) to integrate it in time.

Remark 4. The approximation for the pressure subscale
(12) comes from taking the divergence of the momentum
equation, using the continuity equation and then approxi-
mating the resulting pressure Poisson equation. Following
this procedure, the second term in the right-hand-side of
this equation appears naturally. In some situations, we
have found it crucial to improve pressure stability.

The formulation we want to analyze is now complete. It
consists of solving (9), (10) together with (11), (12) for uh, ~u,
ph and ~p, neglecting the integrals over interelements bound-
aries, as it has been mentioned. Although it does not intro-
duce any particular complication, as it can be observed
from the analysis in [10,11], we will take ~p ¼ 0 for the sake
of simplicity (in fact, we have used expression (12) with s2

given by (14) in the numerical examples of Section 5).
Therefore, the final problem we have to solve can be writ-
ten as a single variational equation as follows: find
½uhðtÞ; phðtÞ� 2 L2ð0; T ;Vd

0;hÞ � L1ð0; T ;Q0;hÞ such that

ðotuh; vhÞ þ mðruh;rvhÞ þ huh � ruh; vhi � ðph;r � vhÞ
þ ðqh;r � uhÞ � hvh; f i þ ot~u; vhð Þ þ h~u � ruh; vhi
� h~u; ~u � rvhi �

X
K

h~u; mDvh þ uh � rvh þrqhiK ¼ 0

ð17Þ
for all ½vh; qh� 2Vd

0;h � Q0;h, where ~u is solution of the non-
linear differential equation (11), with s1 given by (13) and
ru;h by (15). In what follows, we will rename s1 � s.

Remark 5. From the point of view of the implementation
of the method, it is clear from (17) that ~u is needed at the
numerical integration points within each element. There-
fore, (11) has to be integrated in time at each integration
point. In this sense, ~u acts as what would be called internal

variable in solid mechanics.
Remark 6. If the subscales are assumed to be orthogonal to
the finite element space, the term ðot~u; vhÞ vanishes and, as
explained in [11], the term

P
Kh~u; mDvh þ uh � rvh þrqhiK

can be replaced by
P

Kh~u; uh � rvh þrqhiK and still keep
the same accuracy of the method.
Remark 7. Problem (9)–(12) needs to be completed with
initial conditions uh ¼ u0

h and ~u ¼ ~u0 at t ¼ 0, where the
functions u0

h and ~u0 depend on the way to choose the space
of subscales. We assume that the projections onto the finite
element space and the space of subscales are L2 continuous
(this is obvious if P ¼ P?h in (15)), and therefore
ku0

hk 6 Cku0k, k~u0k 6 Cku0k for a certain constant C.
3. Main features of the formulation

The left-hand-side of the discrete variational form of the
problem given by (17) consists of the following terms:
ðotuh; vhÞ þ mðruh;rvhÞ þ huh � ruh; vhi
� ðph;r � vhÞ þ ðqh;r � uhÞ � hvh; f i Galerkin terms;

ð18Þ
�
X

K

h~u; mDvh þ uh � rvh þrqhiK Stabilization terms;

ð19Þ
ot~u; vhð Þ þ h~u � ruh; vhi � h~u; ~u � rvhi

Effect of ~u in the material derivative: ð20Þ

The stabilization terms appear also in the stationary and
linearized problem, and it is now well known that they
allow to overcome the instability problems of the classical
Galerkin formulation, which in this case are the instabili-
ties found in convection-dominated flows and the need to
satisfy an inf–sup condition for the velocity and pressure
interpolations.

The terms associated to the effect of ~u in the material
derivative are precisely those that come from accepting
the decomposition uh þ ~u in the expression of

D

Dt
u ¼ D

Dt
ðuh þ ~uÞ

¼ otuh þ ot~uþ ~u � ruh þ uh � ruh þ ~u � r~uþ uh � r~u:

ð21Þ

Only the last of these terms where ~u appears contributes to
the stabilization terms. Our objective is to discuss precisely
the effect of the other terms contributed by ~u.

3.1. Commutation of space and time discretization

Let us start our discussion on the properties of the
method just presented by noting that we have been able
to formulate a stabilized finite element method without
any reference to the time discretization. Usually, the prob-
lem of formulating stabilized methods for time dependent
problems has been tackled using two main approaches:

• By using space–time finite element formulations, and
considering the temporal derivative in the same way as
the first order spatial derivatives of the convective term.
This is the approach adopted for example in the early
papers on this subject [33,36].

• By discretizing first in time, and then using a stabilized
finite element method for the resulting spatially contin-
uous problem. This is perhaps the most popular
approach in the literature. The design of the time inte-
gration scheme is in principle independent of the stabil-
ization formulation used, but can be adapted to improve
the behavior in time of the solution (see, e.g., [32]).

Space time formulations of order higher than one
require predictor–corrector strategies to avoid an unaccept-
able increase in the number of unknowns treated at once
(see, e.g., [36]). On the other hand, first order methods,
with piecewise constant interpolations in time, lead to very
poor schemes, that need to be modified a posteriori to



R. Codina et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2413–2430 2417
improve their accuracy [31]. In particular, it turns out to be
essential to include an approximation of the time derivative
in the residual given by (15). This comes out naturally if the
equations are first discretized in time using a finite differ-
ence scheme.

Nevertheless, in the subgrid-scale formulation we are
analyzing, the fact of considering the subscales time depen-
dent allows us either to start from the time discrete prob-
lem, as in [11], or to use a method of lines, discretizing
first in space and then in time, which is the approach we
are following here. Both methods will lead exactly to the

same fully discrete scheme, that is to say, space and time dis-

cretization commute, even when using finite difference
schemes in time. In general, this property is trivial only
for stabilized methods that do not involve the residual of
the equations to be solved, as the method proposed in [6]
or even the stabilization with quasi-static orthogonal sub-
scales [11]. However, in this case stability estimates can
be obtained assuming a certain dependence of the stabiliza-
tion parameters with the time step size. We will come back
to this point later on.

Let us consider now which would be a finite difference
time discretization of problem (17), with ~u solution of
(11). To fix ideas, let us apply the generalized trapezoidal
rule. Consider a uniform partition of ½0; T � of size dt, and
for a time dependent function f let f n denote an approxi-
mation to it at tn ¼ ndt, df n :¼ f nþ1 � f n, dtf n :¼ df n=dt
and f nþh ¼ hf nþ1 þ ð1� hÞf n, with 1=2 6 h 6 1. The gen-
eralized trapezoidal rule applied to (17) leads to the follow-
ing fully discrete variational problem: given un

h and ~un, find
unþ1

h , pnþ1
h and ~unþ1 by solving

ðdtu
n
h; vhÞ þ mðrunþh

h ;rvhÞ þ hunþh
h � runþh

h ; vhi
� ðpnþ1

h ;r � vhÞ þ ðqh;r � unþh
h Þ � hvh; f

nþhi
þ dt~u

n; vhð Þ þ h~unþh � runþh
h ; vhi � h~unþh; ~unþh � rvhi

�
X

K

h~unþh; mDvh þ unþh
h � rvh þrqhiK ¼ 0; ð22Þ

dt~u
n þ 1

snþh
~unþh ¼ rnþh

u;h ; ð23Þ

for all ½vh; qh� 2Vd
0;h � Q0;h (we have assumed f continuous

in time, otherwise f nþh has to be understood as a time aver-
age between tn and tnþ1). In (23) it is understood that the
time derivative in rnþh

u;h is already discretized. From this
equation we can obtain ~unþh and insert it into (22). Obvi-
ously, the result will depend on ~un, and thus the subscales
need to be tracked in time.

Eq. (23) can be considered the ‘‘natural’’ choice for the
time integration of the equation for the subscales, in the
sense that they are integrated using the same scheme as
the finite element component of the velocity. Likewise, if
we had first discretized the continuous Navier–Stokes
equations in time and then applied the splitting un ¼
un

h þ ~un we would have arrived also to (22), (23) (with the
adequate modeling of the subscales). However, there is also
the possibility of using a different time integration for uh

and ~u. For example, assuming given a guess for ~unþ1 to
evaluate snþ1 and rnþ1
u;h , within the time interval ½tn; tnþ1� we

could consider the time continuous equation for ~u

ot~uþ
1

snþa
~u ¼ rnþa

u;h ;

with 0 6 a 6 1, which can be integrated to yield

~unþ1 ¼ ð~un � snþarnþa
u;h Þ exp � dt

snþa

� �
þ snþarnþa

u;h : ð24Þ

Remember that both snþa and rnþa
u;h depend on ~unþ1, and

therefore (24) is a nonlinear algebraic equation for this sub-
scale (except if a ¼ 0, of course), which can be solved for
example using the strategy proposed in [7], or simply line-
arized and solved iteratively.

Remark 8. Even though we are considering 1
2 6 h 6 1, (23)

makes sense also for h ¼ 0 (explicit integration of the
subscales), case in which it yields ~unþ1 ¼ ð1� dt=snÞ~unþ
dtrn

u;h. This expression corresponds also to (24) with a ¼ 0
and expanding the exponential to first order in dt=sn.
3.2. Why the stabilization parameter must depend on dt
(but this is not enough)

Let us consider Eq. (23) and re-write it as

~unþh ¼ 1

hdt
þ 1

snþh

� ��1

rnþh
u;h þ

1

hdt
~un

� �
: ð25Þ

From this expression we see that the residual of the
momentum equation is multiplied by

st :¼ 1

hdt
þ 1

snþh

� ��1

: ð26Þ

This is what can be considered the stabilization parameter
for the transient incompressible Navier–Stokes equations.
Expressions with asymptotic behavior similar to (26) in
terms of h, m, juhj and dt can be often found in the literature
(see, e.g., [36,38]). The way to motivate it can be explained
in a simplified way by saying that the temporal derivative
of the velocity is considered as a reaction-like term (with
a zero order derivative) with factor 1=ðhdtÞ, after consider-
ing for a given time step the equations discretized in time.
This explanation can be found for example in [16], or in
[30], where it motivates a careful design of the stabilization
parameters for reaction dominated problems.

In [2] there is a study of the instability encountered when
the ASGS method is used and (25) is replaced by the sim-
plified equation

~unþh ¼ snþhrnþh
u;h ; ð27Þ

that corresponds to what we have called quasi-static sub-
scales. It is shown in the reference mentioned that for the
Stokes time continuous problem the Schur complement
matrix for the pressure is not uniformly invertible, and this
property is inherited as dt! 0 if h, and therefore snþh,
remains fixed (the case h ¼ 1 is considered in [2]).

It is easily shown that the instability described disap-
pears if

dt P Csnþh; ð28Þ
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where C is a positive constant. This is a condition that ap-
pears very often and about which there are several remarks
to be made:

• As it has been mentioned, under condition (28) the
instability problems described in [2] for the ASGS
method do not appear. This condition prevents the pos-
sibility of letting dt! 0 while keeping h fixed.

• In fact, if (28) holds it is irrelevant from the analysis
point of view if the residual in (25) is multiplied by st

defined in (26) or simply by snþh, since this parameter
and st have the same asymptotic behavior in terms of
h, m and juhj.

• Condition (28) was needed in the analysis of the stabil-
ization with orthogonal subscales for the convection–
diffusion equation analyzed in [14], also considering time
dependent subscales. This point is further elaborated in
Section 4.

From this discussion it seems clear that the stabilization
parameter and the time step size must be related in classical

stabilized finite element methods. This is clear from the heu-
ristic arguments presented in the references mentioned
above, the instability described in [2] for the ASGS method
and the reasons found to comply with condition (28) just
mentioned. However, we have not mentioned yet the fact
that in (25) we are tracking the subscales in time. This
has two major benefits, which justifies why taking the sta-
bilization parameter as indicated by (26) is not enough:

• If, as it is done in [16,36,38], among other references, the
stabilization parameter adopted has an expression simi-
lar to (26) but the subscales are not considered time
dependent, the steady-state solution depends on the time

step size. This is clearly not an optimal situation. The
amount of stabilization will depend on the way the
equations are integrated to the steady-state. This does
not happen if expression (25) is used. It can be easily
checked that, when the steady-state is reached, (27)
(now without any superscript) is recovered.

• We will obtain stability for all dt and h, without any need

to satisfy (28). This is particularly relevant, since it
allows us to use arbitrary combinations of h and dt. In
other words, we may use what could be called anisotropic

space–time discretizations. This stability analysis for the
linearized problem is presented in Section 4. Of course it
is possible to use directly (26) without considering time
dependent subscales, and in that case (28) is automati-
cally verified. However, that would lead to stability esti-
mates that become meaningless in space when dt! 0.

3.3. Tracking of subscales along the nonlinear process

Up to now we have considered the effect of the term
ðot~u; vhÞ in (20) and of ot~u in (11). In this subsection we
describe the effect of the other two terms in (20). Summa-
rizing, h~u � ruh; vhi allows us to guarantee global conserva-
tion of momentum, whereas �h~u; ~u � rvhi may be
understood as the term coming from the subgrid-scale ten-
sor in a LES approach.

3.3.1. Conservation of momentum

Let us start by analyzing the effect of h~u � ruh; vhi.
The purpose of what follows is to present a version of
the results in [29], simplified and adapted to the present
setting.

Let Vd
h be the velocity finite element space without

imposing the Dirichlet boundary conditions, that is, with
degrees of freedom also associated to the boundary nodes.
Let t be the stress vector (traction) on the boundary C and
consider the following augmented problem instead of (17):

ðotuh; vhÞ þ mðruh;rvhÞ þ huh � ruh; vhi � ðph;r � vhÞ
þ ðqh;r � uhÞ � hvh; f i � hvh; tiC þ ðot~u; vhÞ þ h~u � ruh; vhi
� h~u; ~u � rvhi �

X
K

h~u; mDvh þ uh � rvh þrqhiK ¼ 0;

where now vh 2Vd
h (not just Vd

h;0). Considering d ¼ 3 and
taking for example vh ¼ ð1; 0; 0Þ and qh ¼ 0, this equation
yieldsZ

X
otðuh;1 þ ~u1Þ � uh;1r � uh½ �dXþ

Z
X

~u � ruh;1 dX

þ
Z

C
uh;1un � n dC ¼

Z
X

f1 dXþ
Z

C
t1 dC;

where now the zero Dirichlet condition for the velocity is
not explicitly required. This statement provides global

momentum conservation if

�
Z

X
uh;1r � uh dXþ

Z
X

~u � ruh;1 dX ¼ 0: ð29Þ

This is implied by the continuity equation obtained by tak-
ing vh ¼ 0

ðqh;r � uhÞ �
X

K

h~u;rqhiK ¼ 0; ð30Þ

provided Vh=R 	 Qh;0, that is to say, the velocity component
uh;1 belongs to the pressure space (uh;1 can be considered
modulo constants, since they do not affect neither the first
nor the second terms in (29)). This holds, in particular, for
the ‘‘natural’’ choiceVh=R ¼ Qh;0, that is to say, equal veloc-
ity–pressure interpolations. For the standard Galerkin
method, this condition is impossible to be satisfied, since equal
interpolation does not satisfy the inf–sup condition. As a
conclusion, the term h~u � ruh; vhi provides global momentum

conservation, since without it in the discrete momentum
equation, we would have obtained�

R
X uh;1r � uh dX ¼ 0 in-

stead of (29), which is not implied by (30).

3.3.2. A door to turbulence
Let us conclude this section with some speculative com-

ments on the contribution of the term �h~u; ~u � rvhi. In the
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standard large eddy simulation (LES) approach to solve
turbulent flows (see e.g., [34,35]) an equation is obtained
for the large, filtered scales of the flow, which we will
denote with an overbar. This equation includes an extra
term when compared with the incompressible Navier–
Stokes equations (1), (2): the divergence of the so-called
residual stress tensor or subgrid-scale tensor R :¼ u
 u�
�u
 �u. Tensor R has to be modeled in terms of �u to obtain
a self-contained equation, a problem known as the closure

problem, and, once this is done, the resulting LES equation
can be solved numerically.

The residual stress tensor, R, is often decomposed into
the so-called Reynolds, Cross and Leonard stresses to keep
the Galilean invariance of the original Navier–Stokes equa-
tion in the LES equation. This invariance is automatically
inherited by the formulation presented in this paper and we
observe that analogous terms to the various stress types are
recovered in a ‘‘natural’’ way from our pure numerical
approach (this was also the case in [27]). Let us have a look
at this point. We first consider the last four terms in the
material derivative (21) as they appear in the variational
equation (17). The term �h~u; ~u � rvhi can be rewritten as

�h~u; ~u � rvhi ¼ �h~u
 ~u;rvhi ðReynolds stressÞ; ð31Þ

while the addition of the other three terms becomes, after
integration by parts,

huh �ruh;vhi�h~u;uh �rvhiþh~u �ruh;vhi¼�huh
uh;rvhi
ðConvection of the large scalesÞ; ð32Þ
�huh
~uþ~u
uh;rvhi ðCross stressÞ: ð33Þ

If we now pay attention to the convective term of the resid-
ual in the subscale equation (11) and take, for simplicity,
P ¼ I , we observe that

h uh þ ~uð Þ � ruh;~vi ¼ �huh 
 uh;r~vi ðLeonard stressÞ
ð34Þ

� huh 
 ~u;r~vi: ð35Þ

Hence, we can effectively conclude that the modifications
introduced by the presence of the divergence of R in the
LES equations are somehow automatically included in
our subgrid-scale stabilized finite element approach. So
far we have given an interpretation to (32)–(35) as contri-
butions from the Galerkin, stabilization and conservation
of momentum terms and also from the equation driving
the dynamic evolution of the subscales (11). In the present
formulation, the remaining Reynolds stress term, (31), is
then considered to account for the direct subscale ‘‘turbu-
lent effects’’ onto the large, resolvable, scales.

How good our formulation will work as a turbulent
model will mainly depend on the validity of the approxima-
tion made to derive the evolution equation for the sub-
scales (11), being the ASGS or the OSS methods two
available possibilities. In order to check this performance,
benchmark problems for turbulent flows should be used.
A widely used benchmark problem is the decay of isotropic
turbulence. Our model should be able to reproduce the
Kolmogorov energy cascade in the wavenumber Fourier
space that displays an inertial range, where Eðk; tÞ �
CKe2=3k�5=3 (e being the energy dissipation rate, k the wave-
number modulus, CK the Kolmogorov constant in energy
space and E the kinetic energy). The model should be also
able to capture the appropriate decay in time of energy,
enstrophy and other related statistical variables. Other
more intricate questions such as if the model allows for
backscatter or if the dimension of the global attractor is
properly reproduced could be also addressed. We remind
that the heuristic estimate for this dimension is N �
ðL=kKÞ3 � Re

9
4 (where kK is the Kolmogorov length scale)

and that the closest estimate analytically proved is
(roughly) ðL=kKÞ4:8 (see [17]). Another standard test for tur-
bulence is the turbulent channel flow. In this case the model
should be able to approximate the turbulent boundary
layer that, according to Prandtl theory, exhibits a log
behavior after the laminar sublayer. Finally, we should
mention that in an attempt to find a more mathematical
foundation for the LES approach to turbulence, the con-
cept of suitable approximations to the Navier–Stokes equa-
tions has been introduced in [20,21]. It is expected that
approximate solutions converge (in a weak sense) to suit-

able solutions. This seems to be the case for low order finite
elements and the standard Galerkin method [19]. Hopefully,
our enhanced formulations will have this property.

The original idea of using the multiscale formulation
with local approximation to the fine scales to compute tur-
bulent flows was already pointed out in [11] and later re-
introduced in [7,28], and further elaborated in [25]. Very
good results were obtained for fully developed and transi-
tional turbulent flows. In fact, some promising results of
numerical simulation of turbulent flows only with stabiliza-
tion can be found in [23,15].

Let us conclude noting that the term �h~u; ~u � rvhi has
been identified with the direct contribution of the subscale
turbulent effect onto the large scales. However, all terms
involving the subscales are indirectly affected by the turbu-
lence effects because the subscales are obtained from the
nonlinear equation (11) that involves (34), (35). In fact, it
is argued in [7] that �h~u; ~u � rvhi has a little influence in
the results. Let us also mention that instead of using an
expression of ~u in terms of the residual, turbulence model-
ing can be attempted by giving directly an expression of
~u
 ~u in terms of uh in the spirit of Smagorinsky’s model
(see [27] and also [18] for a review).

4. Stability analysis of the linear problem

In this section we present the numerical analysis of the
formulation in a simple setting. First, we consider the linear
Oseen problem, that is, taking as advection velocity a con-

stant field a. As time integration scheme, we will consider
only the backward Euler method, so that h ¼ 1 in (22).
The space of subscales will be taken orthogonal to the finite
element space, and thus P ¼ P?h in (15) (remember that Ph

is the projection onto the velocity finite element space
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Vd
h;0). Finally, we will assume that P?h f ¼ 0 (f is therefore a

finite element function) or it is negligible, and we will also
neglect Dvh in (21). These assumptions are not at all essen-
tial, but allow us to simplify the analysis. Note that the sta-
bilization parameter

s ¼ c1
m

h2
þ c2
jaj
h

� ��1

ð36Þ

will be constant.
Under all these conditions, the problem to be solved is:

given un
h, find unþ1

h , ~unþ1 and pnþ1
h such that

ðdun
h; vhÞ þ mdtðrunþ1

h ;rvhÞ þ dtða � runþ1
h ; vhÞ

� dtðpnþ1
h ;r � vhÞ þ dtðqh;r � unþ1

h Þ � dthf nþ1; vhi
� dtð~unþ1; a � rvh þrqhÞ ¼ 0; ð37Þ

d~un þ dts�1~unþ1 ¼ �dtP?h a � runþ1
h þrpnþ1

h

� �
: ð38Þ

In spite of the simplifying assumptions introduced, the
stability analysis presented below highlights the effect of
tracking the subscales in time from the analytical point of
view. Let us summarize the results to be obtained in this
section:

• First of all, we will prove a classical stability result that
involves both the finite element component of the veloc-
ity and the velocity subscale, but not the pressure (The-
orem 1).

• Then we will translate the stability obtained for ~unþ1 in
terms of unþ1

h and pnþ1
h . We will do this in dual norms

introduced below (Theorems 2 and 3).
• The previous results hold for all h and dt. Under condi-

tion (26), we will be able to improve the previous results
and prove stability in the norm usually employed in sta-
bilized finite elements (Theorem 4).

Let us introduce some additional notation. Given a
sequence F ¼ ff ng, with index n ranging from n ¼ 1 to
n ¼ N , the number of time intervals of the partition in time,
we say that F 2 ‘pðX Þ if

PN
n¼1dtkf nkp

X 6 C <1, and
F 2 ‘1ðX Þ if maxn¼1;...;Nkf nkX 6 C <1. Here and in what
follows, C denotes a generic positive constant.

Given two sequences of functions defined in X, F ¼ ff ng
and G ¼ fgng, with f 0 and g0 also given, we will make use
of the following discrete version of the integration-by-parts
formula:

XN�1

n¼0

hdf n; gnþ1i ¼ �
XN�1

n¼0

hf n; dgni þ hf N ; gNi � hf 0; g0i: ð39Þ

Let us recall now the classical inverse estimate that holds
for quasi-uniform finite element partitions as those we are
using (see, e.g., [3]). Given a finite element function fh,
there exists a constant Cinv such that

krfhk 6
Cinv

h
kfhk: ð40Þ
Before stating the stability results, let us finally remark
the assumptions we will need on the data. Obviously, we
will consider that u0 2 L2ðXÞ, and therefore ku0

hk and
k~u0k will be bounded uniformly in h (see Remark 7).
Concerning the force term, the classical assumption
f 2 L2ð0; T ; H�1ðXÞÞ leads to stability at the expense of
allowing the stability constant to depend on 1=m (see, e.g.,
[37]). Since our interest is to prove stability estimates inde-

pendent of m and a, we will need to strengthen the previous
assumption to f 2 L2ð0; T ; L2ðXÞÞ. In fact, f 2 L1ð0; T ;
L2ðXÞÞ would also work, and would be needed if we would
consider the long term behavior T !1, which is not our
purpose here. Some small changes to the following analysis
need to be made in this case. In what follows, we consider T
fixed (and bounded). For the time discrete problem, the
counterpart of f 2 L2ð0; T ; L2ðXÞÞ is ff ng 2 ‘2ðL2ðXÞÞ.

Theorem 1. Let unþ1
h and pnþ1

h be the solution of (37) and

~unþ1 the solution of (38). The following stability bounds hold

for all dt > 0:

max
n¼0;...;N�1

kunþ1
h k

2 þ k~unþ1k2
n o

þ
XN�1

n¼0

dtðmkrunþ1
h k

2 þ ks�1=2~unþ1k2Þ

6 C
XN�1

n¼0

dtkf nþ1k2 þ ku0k2

 !
: ð41Þ

Therefore, if ff ng 2 ‘2ðL2ðXÞÞ and u0 2 L2ðXÞ, we have that

fun
hg 2 ‘

1ðL2ðXÞÞ; f~ung 2 ‘1ðL2ðXÞÞ;
m1=2fun

hg 2 ‘
2ðH1ðXÞÞ; fs�1=2~ung 2 ‘2ðL2ðXÞÞ:
Proof. In order to obtain stability bounds for the finite ele-
ment solution, we test (37) by vh ¼ unþ1

h and qh ¼ pnþ1
h .

Since a is constant and unþ1
h ¼ 0 on oX, we have that

ða � runþ1
h ; unþ1

h Þ ¼ 0. On the other hand, ðf nþ1; unþ1
h Þ 6

a
2
kf nþ1k2 þ 1

2a ku
nþ1
h k

2 for all a > 0. Adding up the resulting

inequalities from n ¼ 0 to an arbitrary time level M and
using the discrete Gronwall Lemma (see, e.g., [22]) with
a > 1, we get
1

2
kuMþ1

h k2 þ 1

2

XM

n¼0

kdun
hk

2 þ
XM

n¼0

dtmkrunþ1
h k

2

�
XM

n¼0

dtð~unþ1; a � runþ1
h þrpnþ1

h Þ

6 C
XM

n¼0

dtkf nþ1k2 þ kPhðu0Þk2

 !
:

Now we can multiply (38) by ~unþ1, integrate over the whole
domain and add up the result from n ¼ 0 to n ¼ M . Doing
that we obtain:
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1

2
k~uMþ1k2 þ 1

2

XM

n¼0

kd~unk2 þ
XM

n¼0

dtks�1=2~unþ1k2

¼ �
XM

n¼0

dt ~unþ1;P?h a � runþ1
h þrpnþ1

h

� �� �
þ 1

2
k~u0k2

:

Adding this equation to the previous inequality and noting
that for any L2ðXÞ-vector function v we have ð~unþ1; vÞ ¼
~unþ1;P?h vð Þ
� �

, we arrive to

kuMþ1
h k2 þ k~uMþ1k2 þ

XM

n¼0

kdun
hk

2 þ
XM

n¼0

kd~unk2

þ
XM

n¼0

dtmkrunþ1
h k

2 þ
XM

n¼0

dtks�1=2~unþ1k2

6 C
XM

n¼0

dtkf nþ1k2 þ kPhðu0Þk2 þ k~u0k2

 !
;

from where the theorem follows. h

The result just proved gives stability for both fun
hg and

f~ung. However, we are interested only in the stability of
the finite element solution (see Remark 10 below) The
question that naturally arises is therefore what does the sta-
bility for the subscale mean in terms of the finite element
solution. As it happens in stabilized finite element methods
for stationary problems or considering quasi-static sub-
scales [10,11], we will see that we will gain stability on
the term

mn :¼ a � run
h þrpn

h; n ¼ 1; 2; . . . ;N : ð42Þ

This provides control both on the convective derivative of
the velocity and on the pressure gradient (note that pres-
sure does not appear in the estimates of Theorem 1).

The question is now in which norm we will be able to
prove stability of the sequence defined by (42). We need
to consider two cases. In the general situation, without
imposing any condition on dt and s, we will prove stability
in a rather weak dual norm. However, if we assume a con-
dition of the form (26), it is possible to improve this stabil-
ity to the classical norm of stabilized finite element
methods.

Given a sequence F ¼ ff ng, of scalar or of vector func-
tions defined on X, we define the following norm:

kF kX :¼
XN

n¼1

dtkf nk2

 !1=2

þ
XN�1

n¼0

dtks1=2dtf nk

þ max
n¼1;...;N

fs1=2kf nkg; ð43Þ

which endows the space of sequences X ¼ fF ¼ ff ngjF 2
‘2ðL2ðXÞÞ; fs1=2dtf ng 2 ‘1ðL2ðXÞÞ; fs1=2f ng 2 ‘‘1ðL2ðXÞÞg of
a Banach space structure. Note that fdtf ng 2 ‘1ðL2ðXÞÞ
and F 2 ‘1ðL2ðXÞÞ certainly define strong topologies, but
the factor s1=2 prevents from any comparison between the
different terms in (43).

Let now X 0 be the dual space of X, the duality pairing
being
hF ;GiX�X 0 :¼
XN

n¼1

dthf n; gni;

with F ¼ ff ng 2 X , G ¼ fgng 2 X 0. The norm in X 0 is given
by

kGkX 0 ¼ sup
F2X ;F 6¼0

hF ;GiX�X 0

kF kX

: ð44Þ

Our main result is the following:

Theorem 2. Assume that ff ng 2 ‘2ðL2ðXÞÞ and u0 2 L2ðXÞ.
Then, there is a constant C such that

kfs1=2mngkX 0 6 C:

Proof. Let fvng 2 X be an arbitrary sequence, and let us
split vn ¼ vn

h þ ~vn, with vn
h ¼ PhðvnÞ and ~vn ¼ vn � vn

h. We
may write (38) as

dt~u
n þ s�1~unþ1 ¼ �P?h ðmnþ1Þ:

Multiplying this equation by s1=2~vnþ1, integrating over X,
adding up the result from n ¼ 0 to N � 1, using formula
(39) and finally using some simple inequalities, we find
that

XN�1

n¼0

dts1=2ðP?h ðmnþ1Þ;~vnþ1Þ

¼ �
XN�1

n¼0

s1=2ðd~un;~vnþ1Þ �
XN�1

n¼0

dts�1=2ð~unþ1;~vnþ1Þ

¼
XN�1

n¼0

s1=2ð~un; d~vnÞ � s1=2ð~uN ;~vN Þ þ s1=2ð~u0;~v0Þ

�
XN�1

n¼0

dts�1=2ð~unþ1;~vnþ1Þ

6 max
n¼0;...;N�1

fk~unkg
XN�1

n¼0

dts1=2kdt~v
nk

þ 2 max
n¼0;...;N

fk~unkgs1=2 max
n¼0;...;N

fk~vnkg

þ
XN�1

n¼0

dtks�1=2~unþ1k2

 !1=2 XN�1

n¼0

dtk~vnþ1k2

 !1=2

: ð45Þ

Theorem 1 allows us to conclude that

hfvng; s1=2fP?h ðmnÞgiX�X 0 ¼
XN�1

n¼0

dts1=2ðP?h ðmnþ1Þ;~vnþ1Þ

6 CkfvngkX : ð46Þ

The next step is to control the finite element component of
fmng. To this end, let us consider the momentum equation
(37) with qh ¼ 0 and vh as defined before. Using arguments
similar to those of the previous development, we have that
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XN�1

n¼0

dts1=2ðPhðmnþ1Þ; vnþ1
h Þ

¼
XN�1

n¼0

dts1=2ða � runþ1
h þrpnþ1

h ; vnþ1
h Þ

¼
XN�1

n¼0

dts1=2hf nþ1; vnþ1
h i �

XN�1

n¼0

s1=2ðdun
h; v

nþ1
h Þ

�
XN�1

n¼0

mdts1=2ðrunþ1
h ;rvnþ1

h Þ þ
XN�1

n¼0

dts1=2ð~unþ1;a � rvnþ1
h Þ

6 s1=2 max
n¼1;...;N

fkvn
hkg
XN�1

n¼0

dtkf nþ1k

þ max
n¼0;...;N

fkun
hkg
XN�1

n¼0

dts1=2kdtv
n
hk

þ 2 max
n¼0;...;N

fkun
hkgs1=2 max

n¼0;...;N
fkvn

hkg

þC
XN�1

n¼0

dtm1=2krunþ1
h kkvnþ1

h k

þC
XN�1

n¼0

dts�1=2k~unþ1kkvnþ1
h k; ð47Þ

where for the last two terms we have used the inverse esti-
mate (40) together with the definition (36) of s, which in
particular implies

m
h
s1=2
6 Cm1=2;

jaj
h

s1=2
6 Cs�1=2:

Using now the assumptions on the data, Cauchy’s inequal-
ity for the last two terms of (47) and Theorem 1, it follows
that

hfv ng; s1=2fPhðmnÞgiX�X 0 ¼
XN�1

n¼0

dts1=2ðPhðmnþ1Þ; vnþ1
h Þ

6 CkfvngkX : ð48Þ

The theorem follows from (46) and (48). h

Remark 9. Instead of considering P ¼ P?h in (15), with Ph

the projection onto the velocity finite element space Vd
h;0,

we could also have considered P ¼ P�;?h , with P�h the
projection onto Vd

h (that is, the velocity space without
boundary conditions). The previous proof could be easily
adapted to obtain stability for ks1=2fPhðmnÞgkX 0 and
ks1=2fP�;?h ðmnÞgkX 0 . The remaining component of s1=2fmng
can be bounded using a mild inf–sup condition, as
explained in [12], which holds in the case of equal veloc-
ity–pressure interpolation (see [12] for details).

In the particular case of the backward Euler time inte-
gration that we are considering in this Section, we can
make use of the fact that

XN�1

n¼0

kdun
hk

2 þ
XN�1

n¼0

kd~unk2
6 C; ð49Þ
which is in fact a by-product of the proof of Theorem 1
(unfortunately, this property is not to be expected in other
schemes such as the Crank–Nicolson time integration). In
turn, the proof of Theorem 2 with slight modifications is
applicable if the norm k � kX defined in (43) is replaced by

kF kY :¼
XN

n¼1

maxfdt; sgkf nk2

 !1=2

: ð50Þ

In fact, we have:

Theorem 3. Assume that ff ng 2 ‘2ðL2ðXÞÞ and u0 2 L2ðXÞ.
Then, there is a constant C such that

kfs1=2mngkY 0 6 C:

Proof. The only terms that need to be bounded in a differ-
ent way with respect to the proof of Theorem 2 are of the
form

XN�1

n¼0

s1=2ðdun;vnþ1Þ6
XN�1

n¼0

kdunk2

 !1=2 XN

n¼1

skvnk2

 !1=2

; ð51Þ

where u and v belong to the space of subscales in the bound
analogous to (45) and belong to the finite element space in
the bound analogous to (47). Due to the boundedness
property (49), (51) is bounded by CkfvngkY . The proof con-
cludes as that of Theorem 2. h

From Theorem 3 we easily obtain our last result, which
is nothing but a refinement when condition (26) holds:

Theorem 4. Suppose that the stabilization parameter defined

in (36) satisfies s 6 Cdt as h! 0 and dt! 0, and assume

also that ff ng 2 ‘2ðL2ðXÞÞ and u0 2 L2ðXÞ. Then, there is a

constant C such thatXN

n¼1

dtks1=2mnk2
6 C:

Proof. If s 6 Cdt it is immediately checked from definition
(50) that Y ¼ ‘2ðL2ðXÞÞ. This space is reflexive, that is,
Y ¼ Y 0, and thus Theorem 3 implies directly Theorem
4. h

Remark 10. One could consider that the numerical solution

of the problem is uh þ ~u, with ~u the approximated subscale.
However, we do not see any reason why this solution has to
behave better than uh alone. Clearly, we cannot expect nei-

ther uh nor uh þ ~u to have a convergence behavior in h

towards the continuous solution u better than the finite ele-
ment interpolant. If this is so for uh, there is no reason to
think that uh þ ~u will be better. The main point of the for-
mulation is that taking into account ~u the finite element
solution uh has better convergence properties than the finite
element solution with ~u ¼ 0, in the sense that the constants
in the stability and convergence estimates do not depend on
the coefficients of the equation and, in particular, do not
blow up as m! 0.
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5. Numerical examples

In this section we present three simple numerical exam-
ples that illustrate the performance of the method. The first
is a convergence test that shows that for solutions with a
smooth behavior in time both quasi-static and transient
subscales lead to the same optimal convergence rate. In
the second example we demonstrate the improvement
obtained when the subscales are tracked in time in the
example introduced in [2]. Finally, the last example is the
classical flow over a cylinder, for which considering tran-
sient subscales leads to better results, both in terms of accu-
racy (with higher amplitudes and frequencies, that is, less
numerical dissipation) and of stability, eliminating some
pressure oscillations in time encountered when the sub-
scales are considered quasi-static. In all the cases we have
used the ASGS method, that is, P ¼ I (identity) in (15),
(16).

5.1. A convergence test

In this example, already presented in [9], we consider the
time dependent Navier–Stokes equations in the unit square
with homogeneous Dirichlet boundary conditions and tak-
ing the force f and boundary and initial values to have the
exact solution defined by

u ¼ 100hðtÞ f ðxÞf 0ðyÞ;�f 0ðxÞf ðyÞð Þ; p ¼ 100x2;

where

hðtÞ ¼ cosðptÞe�t; f ðxÞ ¼ x2ð1� xÞ2:
Uniform meshes of 10� 10, 20� 20, 40� 40 and 80� 80
bilinear elements have been used to discretize the computa-
tional domain. The time interval of the analysis is [0,1] and
the viscosity is 0.1.

The objective of this test is to check the convergence of
the time approximation to the exact solution using the
method proposed here. To this end we compare the results
obtained using transient subscales (TRS) to those obtained
using quasi-static subscales (QSS) (see Remark 2). We
compute the error as the discrete approximation to the L2

norm of the difference between the exact and the approxi-
mated solution at time t ¼ 1 and we normalize it using
the discrete approximation to the L2 norm of the exact
solution. Numerical experiments have been performed
using a first and a second order temporal discretization
(Crank–Nicolson scheme) and several time step sizes. In
the case of the second order approximation we have also
considered a first and second order time integration of
Eq. (23). The convergence of the velocity approximation
is shown in Fig. 1, from where it is seen that stabilized
approximation converges to the exact solution at the
expected rate either using the time dependent or the
quasi-static subscales (see Remark 9). We also note that
the integration of the subgrid-scale equation (23) using a
first or a second order method has little influence on the
results.
5.2. Stability in the small time step limit

The second example, presented in [2], shows the instabil-
ity of the approximation to the Stokes problem when
quasi-static subscales are considered (recall that we are
using the ASGS method in all the examples). It consists
again of an exact solution problem in which the time
dependent Navier–Stokes equations are solved in the unit
square with Dirichlet boundary conditions taking the force
f and boundary and initial values to have the exact (steady-
state) solution defined by

u¼ sinðpx�0:7Þsinðpyþ0:2Þ;cosðpx�0:7Þcosðpyþ0:2Þð Þ;
p¼ sinðpxÞcosðpyÞþðcosð1Þ�1Þsinð1Þ:

Numerical examples presented in [2] show that spurious
oscillations in the pressure are found when the time step
is small enough and that this effect is more dramatic when
the order of the polynomial approximation is increased.
We have solved this problem using different meshes
for time step sizes dtn ¼ 10�n using a first order time
approximation.

Fig. 2 shows the convergence of the approximation
using bilinear elements at the first time step, while Fig. 3
shows the same results corresponding to the second time
step. The instability mentioned can be seen in Fig. 2, as
for a given mesh size the error increases when the time step
is decreased. As a first order approximation is being used
and the solution of the problem is steady, the error should
decrease linearly with the time step size. This is not the case
in the first step, neither using the quasi-static subscales as
shown in [2], nor using transient subscales. However, as
shown in Fig. 3, when the transient subscales are consid-
ered the instability is eliminated at the second time step.
This behavior leads to consider the practical problem of
the initial conditions for the subgrid-scale (we have taken
them to be zero), which has not been considered here. It
has to be noted that, in any case, the instability observed
disappears as time advances and, obviously, the stationary
solution is equally approximated using quasi-static and
transient subscales.

The situation is different when higher order elements are
used. Fig. 4 shows the convergence of the approximation
using biquadratic elements while Fig. 5 shows the conver-
gence of the approximation using bicubic elements, both
at the first time step. Similar results are found for the sec-
ond time step. From Figs. 4 and 5 it is seen that when
quasi-static subscales are considered the method could
not converge as the mesh is refined for small time steps.
This is even more dramatic than the result presented in
[2], where only a fixed mesh of 10� 10 elements was con-
sidered. In the case of transient subscales, although some
dependence of the error on the time step size is still
observed, convergence under mesh refinement is always
achieved. This effect is seen in Fig. 6, where pressure con-
tours for different mesh sizes obtained using quasi-static
and transient subscales are compared.
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Fig. 1. Convergence of the time approximation using quasi-static subscales (QSS) and transient subscales (TRS). First order approximation on the left
and second order approximation on the right. In the second order approximation first order (FO) or second order (SO) subscales are considered. From top
to bottom meshes of sizes h ¼ 1=20, h ¼ 1=40 and h ¼ 1=80. Note that the convergence curves loose the optimal slope in time (1 or 2) when the error
becomes dominated by the spatial component.
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5.3. Flow past a cylinder

The last example is the flow past a cylinder at Re ¼ 100,
a well known benchmark. The domain is ½0; 16� � ½0; 8� n D,
where the cylinder D has a diameter 1 and is located at
(4,4). A uniform velocity is prescribed at the inlet, zero y

component is prescribed at y ¼ 0 and y ¼ 8 and zero trac-
tion is prescribed at the outlet. Two meshes have been used
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right. Velocity error at the top and pressure error at the bottom.
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to test the behavior of the method, a coarse one of 1360
nodes and a fine one of 5280. The results will be compared
to those obtained using a reference mesh of 20,800 nodes.
The initial condition is u ¼ ð1; 0Þ except at the cylinder
surface. From this initial condition the flow evolves to a
symmetric solution that becomes unstable around t ¼ 100
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Fig. 4. Convergence of the approximation using biquadratic elements at the first time step. Quasi-static subscales on the left and transient subscales on the
right. Velocity error at the top and pressure error at the bottom.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1  1

lo
g 

e

log h

dt=1e-1
dt=1e-2
dt=1e-3
dt=1e-4
dt=1e-5
dt=1e-6
Slope 4

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

lo
g 

e

log h

dt=1e-1
dt=1e-2
dt=1e-3
dt=1e-4
dt=1e-5
dt=1e-6
Slope 4

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1

lo
g 

e

log h

dt=1e-1
dt=1e-2
dt=1e-3
dt=1e-4
dt=1e-5
dt=1e-6
Slope 3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1

lo
g 

e

log h

dt=1e-1
dt=1e-2
dt=1e-3
dt=1e-4
dt=1e-5
dt=1e-6
Slope 3

Fig. 5. Convergence of the approximation using bicubic elements at the first time step. Quasi-static subscales on the left and transient subscales on the
right. Velocity error at the top and pressure error at the bottom.
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and the characteristic vortex shedding appears. To visual-
ize the problem setting, a pressure distribution snapshot
in the fully developed regime is shown in Fig. 7. A second
order method has been used with time step size dt ¼ 0:2
and 10 Euler time steps have been performed at the begin-
ning of the calculations for all the meshes. A convergence



Fig. 6. Pressure contours for dt ¼ 10�6 and (from top to bottom) h ¼ 1=20, h ¼ 1=40 and h ¼ 1=80 using biquadratic elements. Quasi-static subscales on
the left and transient subscales on the right.

Fig. 7. Pressure distribution at t ¼ 160.
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tolerance of 10�8 was required at each step, which was
achieved typically after 8–10 Picard iterations.

Figs. 8 and 9 show the evolution of the x-velocity at
point (6.15,4), Figs. 10 and 11 that of the y-velocity and
Figs. 12 and 13 that of the pressure, always at the same
point and for the two meshes considered, comparing the
results obtained using quasi-static subscales and transient
subscales to those obtained using the reference mesh. It
can be seen from Figs. 8 and 9 how the use of the transient
subscales gives a better mean value of the x-velocity when
the flow is fully developed, specially in the coarse mesh.
From Figs. 10 and 11 it can be observed how the use of
the transient subscales gives a higher amplitude and a
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Fig. 8. Horizontal velocity evolution at (6.15,4.0) using the coarse mesh
(top) and its detail (bottom).
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Fig. 9. Horizontal velocity evolution at (6.15,4.0) using the fine mesh
(top) and its detail (bottom).
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Fig. 10. Vertical velocity evolution at (6.15,4.0) using the coarse mesh
(top) and its detail (bottom).
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Fig. 11. Vertical velocity evolution at (6.15,4.0) using the fine mesh (top)
and its detail (bottom).

2428 R. Codina et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2413–2430
higher frequency of the oscillation, that is to say, less
numerical dissipation. Finally, in Fig. 12 some time step-
to-time step oscillations can be observed when the quasi-
static subscales are used and how these oscillations do
not appear when transient subscales are considered. These
oscillations, already reported in [11], depend on the length
used in the definition of the stabilization parameters. They
appear when there is a variation of the element size from
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Fig. 12. Pressure evolution at (6.15,4.0) using the coarse mesh (top) and
its detail (bottom).
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Fig. 13. Pressure evolution at (6.15,4.0) using the fine mesh (top) and its
detail (bottom).
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one element to another and they disappear if a fixed mesh
size is used to define the stabilization parameter. From
Fig. 13 it is seen that they also disappear in the fine mesh.
In this case there is almost no gain in the pressure using
transient subscales (but there is in the velocity, as shown
in Figs. 9 and 11).

6. Conclusions

The main conclusion of this paper is simple: we believe it
is worth to track the subscales in time in a variational
multiscale approach to the transient incompressible
Navier–Stokes equations and to take into account all their
contributions in the convective term.

The first and very simple reason is that it leads to global
momentum conservation, a rare property. A second reason
can be the door opened to turbulence modeling, although
we have touched this point only marginally. What has been
the main focus of this paper is the study of the advantages
of tracking the subscales from the point of view of the time
integration scheme. First, we have remarked that the
resulting formulation leads in a natural way to the correct
behavior of the stabilization parameters with the time step
while steady-state solutions do not depend on it. Moreover,
the conflict about the design of the stabilization terms for
time dependent problems (either at the semi-discrete or
the fully discrete level) disappears, since space and time
discretization can be commuted. The numerical analysis
shows that the method is stable (a simple setting has
been analyzed here) and the numerical experiments show
that the gain with respect to quasi-static subscales is
notorious.
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